Free access

Forest genomics research and development in Canada: Priorities for developing an economic framework

Publication: The Forestry Chronicle
23 January 2015

Abstract

Forest genomics is a relatively recent research field and is often poorly understood both by the public and forest managers. Genomics in forestry, an expansion of forest biotechnology, seeks to develop generalized technologies for use in industrial plantations and/or natural forests as well as within process optimization, product development and international trade facilitation. With such tools it is possible to address formerly intractable issues such as understanding the underpinnings of complex traits for conservation management purposes, improved use of forest trees as carbon sinks, feedstock for biofuels and “green chemistry” through deeper understanding and effective utilization of forests’ natural variation. Diverse end-users could benefit from genomics tools; for example, real-time detection and mapping of known and novel pathogens along with risk assessments to protect forest nurseries and natural forests from invasive pathogens and reduce economic losses associated with diseases. Since 2001, there has been approximately $123 million invested in Canadian forest genomics research; we thought it would be helpful to summarize projects in Canada and the USA and to identify research priorities and potential economic implications by: (a) developing a robust typology of forest sector genomics research relevant to Canadian application; (b) categorizing each initiative for its application potential (commercial, noncommercial); and, (c) demonstrating with silvicultural gain, insect resistance, and wood composition themes the application of modeling and economic analysis.

Résumé

La génomique forestière est un domaine de recherche relativement récent et souvent mal compris tant du public que des gestionnaires forestiers. La génomique forestière, une extension de la biotechnologie forestière, cherche à développer des technologies généralisées pouvant servir en plantation industrielle ou encore dans les forêts naturelles tout aussi bien que dans les processus d'optimisation, le développement de produit et la facilitation du commerce international. Avec de tels outils, il est possible d'aborder des problèmes autrefois insolubles comme comprendre les fondements des traits complexes utilisés en gestion de la conservation ou une meilleure utilisation des forêts comme réservoirs de carbone, comme source de biocarburants et pour « la chimie verte » rendus possibles grâce à une compréhension plus poussée et une utilisation efficace de la variabilité naturelle au sein des forêts. Plusieurs utilisateurs pourraient utiliser à leur avantage les outils de la génomique; par exemple, pour détecter et cartographier en temps réel les pathogènes connus et nouveaux et faire une évaluation du risque afin de protéger les pépinières forestières et les forêts naturelles contre des pathogènes envahissants et réduire les pertes économiques associées aux maladies. Depuis 2001, environ 123 millions de $ ont été investis en génomique forestière au Canada; nous avons pensé qu'il serait utile de résumer les projets canadiens et états-uniens et d'identifier les priorités de recherche et les implications économiques potentielles avec: (a) le développement d'une typologie éprouvée des recherches en génomique forestière applicable au Canada; (b) la classification de chacun de ces projets en fonction de son utilisation potentielle (commerciale ou non-commerciale); et (c) de démontrer l'application de la modélisation et de l'analyse économique en montrant les gains possibles en sylviculture, en résistance aux insectes et en composition du bois.

Formats available

You can view the full content in the following formats:

References

Aukema, B., J. Bohlmann, A.-C. Bonfils, D. Doucet, I. Elouafi, N. Erbilgin, A. Seguin and S. Smith. 2009. Canadian Forest Health Genomics: Canadian Strengths Address Forestry Challenges. Forest Health Genomics Strategic Paper Presented by the Canadian Genome Centres to the Federal and Provincial Governments of Canada. 32 p. Available at http://www.ontariogenomics.ca/sites/default/files/CFHGI%20-%20Forest%20Health%20Genomics%20Strategy%20Paper.pdf [Accessed 06 November 2014].
Beaulieu J., Doerksen T., Clement S., MacKay J., and Bousquet J. Accuracy of genomic selection models in a large population of open-pollinated families in white spruce Heredity 2014 113 4 343 -352
Bhalerao R., Nilsson O., and Sandberg G. Out of the woods: forest biotechnology enters the genomic era Curr. Opin. Biotechnol. 2003 14 2 206 -213
Costanza, A. and S. McCord. 2009. Forest Biotechnology and its Responsible Use [online]. The Institute of Forest Biotechnology. Raleigh, NC. 13 p. Available at http://responsibleuse.org/material/biotechtrees.html. [Accessed 06 November 2014].
El-Kassaby Y.A. and Lstiburek M. Breeding without breeding Genet. Res. 2009 91 2 111 -120
Grattapaglia D. and Resende M.D.V. Genomic selection in forest tree breeding Tree Genet. Genomes 2011 7 2 241 -255
Groover A.T. Will genomics guide a greener forest biotech? Trends Plant Sci. 2007 12 6 234 -238
Holliday J.A., Ralph S.G., White R., Bohlmann J., and Aitken S.N. Global monitoring of autumn gene expression within and among phenotypically divergent populations of Sitka spruce (Picea sitchensis) New Phytol. 2008 178 1 103 -122
Ivkovic M., Wu H., and Kumar S. Bio-economic Modelling as a Method for Determining Economic Weights Silvae Genet. 2010 59 77 -90
Kirst M., Myburg A.A., De Leon J.P.G., Kirst M.E., Scott J., and Sederoff R. Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus Plant Physiol. 2004 135 4 2368 -2378
Kumagai K., Culver K., and Castle D. Public-Private Research Collaborations in Canadian Forestry Genomics: Knowledge Management and Innovation The Integrated Assessment Journal 2010 10 1 15
McKown, A. et al. 2014. Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. New Phytol.
Meuwissen T.H.E., Hayes B. J., and Goddard M.E. Prediction of total genetic value using genome-wide dense marker maps Genetics 2001 157 4 1819 -1829
Petrinovic J.F., Gélinas N., and Beaulieu J. Benefits of using genetically improved white spruce in Quebec: The forest landowner's viewpoint For. Chron. 2009 85 4 571 -582
Poland J.A. and Rife T.W. Genotyping-by-Sequencing for Plant Breeding and Genetics Plant Genome 2012 5 3 92 -102
Porth I. and El-Kassaby Y.A. Current status of the development of genetically modified (GM) forest trees world-wide: a comparison with the development of other GM plants in agriculture CAB Reviews 2014 9 8 12
Porth I., Klapste J., Skyba O., Friedmann M.C., Hannemann J., Ehlting J., El-Kassaby Y.A., Mansfield S.D., and Douglas C.J. Network analysis reveals the relationship among wood properties, gene expression levels and genotypes of natural Populus trichocarpa accessions New Phytol. 2013a 200 3 727 -742
Porth I., Klapste J., Skyba O., Lai B.S.K., Geraldes A., Muchero W., Tuskan G.A., Douglas C.J., El-Kassaby Y.A., and Mansfield S.D. Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations New Phytol. 2013b 197 3 777 -790
Porth I., White R., Jaquish B., Alfaro R., Ritland C., and Ritland K. Genetical Genomics Identifies the Genetic Architecture for Growth and Weevil Resistance in Spruce PLOS ONE 2012 7 9 e44397
Prunier J., Pelgas B., Gagnon F., Desponts M., Isabel N., Beaulieu J., and Bousquet J. The genomic architecture and association genetics of adaptive characters using a candidate SNP approach in boreal black spruce BMC Genomics 2013 14 1 368
Rank, D. and Associates. 2013. Forest Sector: Challenges, Genomic Solutions. A Sector Strategy led by Génome Québec and Genome British Columbia, with support from regional Genome Centres across Canada and funded by Genome Canada. Genome Canada. 32 p. Available at www.genomecanada.ca/medias/PDF/EN/Forestry_EN.pdf.
Resende M.F.R. Jr, Munoz P., Acosta J.J., Peter G.F., Davis J.M., Grattapaglia D., Resende M.D.V., and Kirst M. Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments New Phytol. 2012a 193 3 617 -624
Resende M.D.V. et al. Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees New Phytol. 2012b 194 1 116 -128
Rico A., Rencoret J., del Rio J.C., Martinez A.T., and Gutierrez A. Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock Biotechnol. Biofuels 2014 7 1 6
Ristea, C. 2014. Modeling the Net Greenhouse Gas Balance of Projects that Display Gasoline with Wood Ethanol from Short Rotation Tree Plantations. Unpublished draft of PhD dissertation. Forestry, UBC, Vancouver, BC.
Schwab O., Maness T., Bull G., Welham C., Seely B., and Blanco J. Modeling the timber supply impact of introducing weevilresistant spruce in British Columbia with cellular automata Forest Policy Econ. 2011 13 61 -68
Sederoff R., Myburg A., and Kirst M. Genomics, domestication, and evolution of forest trees Cold Spring Harbor Symposia On Quantitative Biology 2009 74 303 -317
Stephen, J. 2013. The Variability of Lignocellulosic Ethanol Production as a Business Endeavour in Canada. Unpublished PhD Dissertation. Forestry, UBC, Vancouver. BC.
Street N.R., Skogstrom O., Sjodin A., Tucker J., Rodriguez- Acosta M., Nilsson P., Jansson S., and Taylor G. The genetics and genomics of the drought response in Populus Plant J. 2006 48 3 321 -341
Tsang, A. et al. 2007. Genome Canada – Strategic Research Theme: Securing Canada's Future Bio-Based Economy through Genomics. The Biofuels and Bioproducts Genomics Working Group. Position Paper Biofuels and Bioproducts Strategic Research Theme. 13 p. Available at http://www.genomecanada.ca/medias/PDF/en/Bioproducts.pdf [Accessed 06 November 2014].
US Department of Energy, O.o.S. 2013. Plant Feedstock Genomics for Bioenergy Joint Awards 2006–2013 [online]. National Institute of Food and Agriculture United States Department of Agriculture. Available at http://GenomicScience.energy.gov/research/DOEUSDA/ [Accessed 06 November 2014].
Van Acker R., Vanholme R., Storme V., Mortimer J.C., Dupree P., and Boerjan W. Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana Biotechnol. Biofuels 2013 6 1 46
VanRaden P.M. Efficient Methods to Compute Genomic Predictions J. Dairy Sci. 2008 91 11 4414 -4423
Verta J.-P., Landry C.R., and MacKay J.J. Are long-lived trees poised for evolutionary change? Single locus effects in the evolution of gene expression networks in spruce Molecular Ecology 2013 22 9 2369 -2379
Wilkerson C.G. et al. Monolignol Ferulate Transferase Introduces Chemically Labile Linkages into the Lignin Backbone Science 2014 344 6179 90 -93

Information & Authors

Information

Published In

cover image The Forestry Chronicle
The Forestry Chronicle
Volume 91Number 01January 2015
Pages: 60 - 70

History

Version of record online: 23 January 2015

Key Words

  1. forest genomics
  2. thematic areas
  3. commercial applications
  4. social and ecological dimensions
  5. economic analysis
  6. pest resistance
  7. silvicultural gain
  8. wood composition
  9. market access
  10. tree improvement

Mots-clés

  1. génomique forestière
  2. domaines thématiques
  3. applications commerciales
  4. aspects sociaux et écologiques
  5. analyse économique
  6. résistance aux ravageurs
  7. gain sylvicole
  8. composition du bois
  9. marché

Authors

Affiliations

Ilga Porth
Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4
Department of Forest Resources Management, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4
Suborna Ahmed
Department of Forest Resources Management, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4
Yousry A. El-Kassaby
Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4
Department of Forest Resources Management, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4
Mark Boyland
Department of Forest Resources Management, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Britanya Kolumbiyası (Kanada) ormancılığında ağaç ıslahı
2. A review of Canadian wood conversion technologies for the production of fuels and chemicals
3. Genomic Tools in Applied Tree Breeding Programs: Factors to Consider
4. Modernization, meet paradigm shift. Paradigm shift, meet chaos*
5. Comment mettre la génomique forestière et la génomique de la conservation au service des communautés autochtones?
6. How to put forest and conservation genomics into motion for and with Indigenous communities?
7. Economic potential of adopting genomic technology in Alberta’s tree improvement sector
8. Biotechnologies in agriculture and forestry: Governance insights from a comparative systematic review of barriers and recommendations
9. Meta-Modelling to Quantify Yields of White Spruce and Hybrid Spruce Provenances in the Canadian Boreal Forest
10. Genomic biosurveillance of forest invasive alien enemies: A story written in code
11. Examining the vulnerability of localized reforestation strategies to climate change at a macroscale
12. A financial analysis of using improved planting stock of white spruce and lodgepole pine in Alberta, Canada: genomic selection versus traditional breeding
13. Biosurveillance of forest insects: part II—adoption of genomic tools by end user communities and barriers to integration
14. Expected benefit of genomic selection over forward selection in conifer breeding and deployment
15. Genomic tools for traceability: Opportunities, challenges and perspectives for the Canadian forestry sector
16. Assessing the adoption and impact of genomics research at the Canadian Forest Service
17. Perceived Acceptability of Implementing Marker-Assisted Selection in the Forests of British Columbia

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share Options

Share

Share the article link

Share on social media