Free access

Damage caused by Lophodermium needle cast in open-pollinated and control-crossed progeny trials of Scots pine (Pinus sylvestris L.)

Publication: The Forestry Chronicle
28 May 2018


The effect of genetics on the level of damage caused by Lophodermium needle cast to Scots pine was assessed in an openpollinated progeny trial (226 families from 12 provenances) and in a control-crossed progeny trial (72 families obtained by diallel crossing of 10 parent trees). Each of the trials was replicated on two test sites. The damage caused by the pathogen was estimated visually in June of the 2nd and 6th growing seasons using a five grade scale. Location and genetics were found to be significantly related to the level of needle cast damage. The proportion of severely damaged trees in each family correlated significantly between locations; moreover, the correlation was tighter for the control-crossed than open-pollinated families (r = 0.59 and r = 0.36, respectively), indicating higher stability of resistance level against the disease for the genetically more homogeneous material. The effect of plus tree selection on the proportion of severely damaged trees was similar, regardless of its status (i.e., mother-tree or father-tree) in the family. The progenies of plus trees selected for resin production had the same level of damage by Lophodermium spp. needle cast as the selections made for growth and stem form.


Cette étude portait sur l’effet de la génétique sur le niveau de dégât lié au rouge cryptogamique des aiguilles de pin (Lophodermium) chez le pin sylvestre. Le dispositif comprenait un test de descendance à pollinisation naturelle sur 226 familles venant de 12 provenances, et un test de descendance avec pollinisation croisée sur 72 familles résultant des croisements diallèles sur 10 parents. Chacun des tests a été répété sur deux sites d’essais. L’évaluation visuelle des dommages causés par l’agent pathogène s’est faite aux mois de juin de la 2e et de la 6e année en utilisant une classification à cinq niveaux. La localisation et la génétique étaient liées de façon significative au dégât provoqué par le rouge cryptogamique. La proportion des arbres très endommagés dans chaque famille était significativement corrélée entre les deux sites de tests; de plus, le niveau de corrélation était plus élevé chez les familles résultant de pollinisation croisée que chez celles obtenues par pollinisation libre (r = 0,59 et r = 0,36, respectivement), ce qui laisse croire que la résistance à la maladie serait plus stable avec du matériel génétiquement plus homogène. L’effet lié à la sélection des arbres plus sur la proportion d’arbres très endommagés demeurait le même, peu importe son statut dans la famille (c. à d. arbre-mère ou arbre-père). Les descendances d’arbres plus choisis pour la production de résine montraient le même niveau de dommage par le rouge cryptogamique des aiguilles de pin (Lophodermium spp) que celles choisies pour la croissance et la forme de la tige.

Formats available

You can view the full content in the following formats:


Adamson K, Klavina D., Drenkhan R., Gaitnieks T., and Hanso M. 2015 Diplodia sapinea is colonizing the native Scots pine (Pinus sylvestris in the northern Baltics European Journal of Plant Pathology 143 2 343 -350
Amerson H.V, Nelson C.D., Kubisiak T.L., Kuhlman E.G., and Garcia S. 2015 Identification of nine pathotype-specific genes conferring resistance to fusiform rust in loblolly pine (Pinus taeda L.) Forests 6 8 2739 -2761
Baumanis, I., D. Pīrāgs and Z. Spalviņš. 1982. Resistance trials of Scots pine clones in Latvian SSR. In H.M. Heybroek, B.R. Stephan and K. von Weissenberg. Proceedings of the Third International Workshop on the Genetics of Host-Parasite Interactions in Forestry: Resistance to Diseases and Pests in Forest Trees, Wageningen, The Netherlands, 14-21 September 1980. pp. 448–449. PUDOC, Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands.
Baumanis, I., J. Birģelis and D. Pīrāgs. 1989. Needlecast resistance of different Scots pine provenances. In Protection of pine and fir in the Latvian SSR. pp. 111–118. Zinatne, Riga, Latvia. [Translated from Russian].
Bednářová, M., M. Dvořák, J. Janoušek and L. Jankovský. 2013. Other foliar diseases of coniferous trees. In P. Gonthier and G. Nicolotti (eds.). Infectious Forest Diseases. pp. 458–487. Wallingford: CABI.
Berlin M, Danell Ö., Jansson G., Andersson B., Elfving B., and Ericsson T. 2009 A model to estimate economic weight of tree survival relative to volume production taking patchiness into account Scandinavian Journal of Forestry Research 24 4 278 -287
Berlin M, Lönnstedt L, Jansson G, Danell Ö., and Ericsson T. 2010 Developing a Scots pine breeding objective: A case study involving a Swedish sawmill Silva Fennica 44 4 643 -656
Bridgen, M.R. and Hanover J.W. 1982. Indirect selection for pest resistance using terpenoid compounds. In Proceedings of The Third International Workshop on the Genetics of Host-Parasite Interactions in Forestry, Wageningen, the Netherlands, 14-21 September, 1980. pp. 161-168. Centre for Agricultural Publishing and Documentation, Wageningen, the Netherlands.
Bulman, L.S., M.A. Dick, R.J. Ganley, R.L. McDougal, A. Schwelm and R. E. Bradshaw. 2013. Dothistroma needle blight. In P. Gonthier and G. Nicolotti (eds.). Infectious Forest Diseases. pp. 436–457. Wallingford: CABI.
Bušs, K. 1976. Basis of Forest classification in Latvia SSR. LRZTIPI, Riga. [Translated from Latvian].
Carson S.D. and Carson M.J. 1989 Breeding for resistance in forest trees – A quantitative genetic approach Annual Review of Phytopathology 27 373 -395
Draveniece, A. 2007. Oceanic and continental air masses in Latvia. University of Latvia, Institute of Biology, Latvijas Veģetācija No.14.
Drenkhan, R. 2011. Epidemiological investigation of pine foliage diseases by the use of the needle trace method. Doctoral thesis, Estonian University of Life Sciences, Tartu, Estonia.
Eriksson, G. 2008. Pinus sylvestris: Recent Genetic Research. Department of Plant Biology and Forest Genetics, Genetic Center, Swedish University of Agricultural Sciences, Uppsala, Sweden, pp. 115.
Giertych, M. 1991. Inheritance of tree form. In M. Giertych and Cs. Mátyás (eds.). Genetics of Scots pine. pp. 243–254. Elsevier Science Publishers, Amsterdam, The Netherlands.
Hanso, M. and R. Drenkhan. 2007. Retrospective analysis of Lophodermium seditiosum epidemics in Estonia. Acta Silvatica and Lignaria Hungarica, Special Edition: 31–45.
Hanso M. and Drenkhan R. 2012 Lophodermium needle cast, insect defoliation and growth responses of young Scots pines in Estonia Forest Pathology 42 2 124 -135
Jansons Ā. and Baumanis I. 2005 Growth dynamics of Scots pine geographical provenances in Latvia Baltic Forestry 11 2 29 -37
Jansons, Ā., U. Neimane and I. Baumanis. 2008. Needlecast resistance of Scots pine and possibilities of its improvement. Mežzinātne 18: 3–18. [Translated from Latvian].
Kanaskie, A. 1990. Lophodermium needle cast of Scotch pine. In P.B. Hamm, S.J. Campbell and E.M. Hansen (eds.). Growing healthy seedlings: Identification and management of pests in northwest forest nurseries. p. 34. Oregon State University, Oregon, USA.
Karlman M 2001 Risks associated with the introduction of Pinus contorta in northern Sweden with respect to pathogens Forest Ecology and Management 141 97 -105
Kļaviņa D, Ķiesnere R.D., Korica A.M., Arhipova N., Daugavietis M., and Gaitnieks T. 2012 Evaluation of impact of pine bark extracts on mycelial growth of Lophodermium seditiosum in vitro Mežzinātne 26 59 167–181 [Translated from Latvian].
Krakau, U.K., M. Liesebach, T. Aronen, M.A. Lelu-Walter and V. Schneck. 2013. Scots pine (Pinus sylvestris L.). In L.E. Pâques (ed.). Forest tree breeding in Europe: Current state-of-the-art and perspectives. pp. 267–323. Springer, London.
Krauklis, Ā. and A. Zariņa. 2002. European hornbeam in the landscape of its northern distribution limit in Latvia. Folia Geographica 10: 16–47. [Translated from Latvian].
Kurkela T, Drenkhan R., Vuorinen M., and Hanso M. 2009 Growth response of young Scots pines to needle loss assessed from productive foliage Forestry Studies 50 5 -22
Kuzmina N. and Kuzmin S. 2008 Intraspecific response of Scots pine (Pinus sylvestris L.) to pathogens in a provenance trial in Middle Siberia Eurasian Journal of Forest Research 11 2 51 -59
La Porta N, Capretti P., Thomsen I.M., Kasanen R., Hietala A.M., and Von Weissenberg K. 2008 Forest pathogens with higher damage potential due to climate change in Europe Canadian Journal of Plant Pathology 30 2 177 -195
Li Y, Suontama M, Burdon R.D., and Dungey H.S. 2017 Genotype by environment interactions in forest tree breeding: review of methodology and perspectives on research and application Tree Genetics & Genomes 2017 13 60
Martinsson, O. 1979. Testing Scots pine for resistance to Lophodermium needle cast. Studia Forestalia Suecica 150.
Millberg, H. 2015. Foliar fungi of Scots pine (Pinus sylvestris). Doctoral thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden.
Oliva J, Stenlid J., Grönkvist-Wichmann L., Wahlström K., Jonsson M., Drobyshev I., and Stenström E. 2016 Pathogen-induced defoliation of Pinus sylvestris leads to tree decline and death from secondary biotic factors Forest Ecology and Management 379 273 -280
Ostry M.E. and Nicholls T.H. 1989 Effect of Lophodermium seditiosumon growth of pine nursery seedlings in Wisconsin Plant Disease 73 10 798 -800
Persson, T. 2012.Genotype by environment interaction for survival, growth and Cronartium resistance in northern Scots pine. In Proceedings of International Conference: Genetic Aspects of Adaptation and Mitigation: Forest Health, Wood Quality and Biomass Production, Riga, Latvia, 3–5 October, 2012. p. 150. LSFRI Silava, Salaspils, Latvia.
Pīrāgs, D., I. Baumanis and J. Smilga. 1990. The dynamics of forest tree breeding. In The role of tree breeding in the improvement of Latvian forests. pp. 3–11. Zinatne, Riga, Latvia. [Translated from Russian].
Rishbeth, J. 1972. A discussion on disease resistance in plants – Resistance to fungal pathogens of tree roots. In Proceedings of the Royal Society of London, Series V, Biological sciences 181: 333–351.
Skrøppa, T., H. Solheim and A. Steffenrem. 2015. Genetic variation, inheritance patterns and parent–offspring relationships after artificial inoculations with Heterobasidion parviporum and Ceratocystis polonica in Norway spruce seed orchards and progeny tests. Silva Fennica 49: 12 p.
Squillace A.E, La Bastide J.G.A., and Van Vredenburch C.L.H. 1975 Genetic variation and breeding of Scots pine in the Netherlands Forest Science 21 4 341 -352
Stenlid, J., J. Oliva and J. Boberg. 2017. Climatic influence on recent outbreaks of Dothistroma septosporum and other needle diseases of pine in Sweden. Abstract Book: IUFRO 125th Anniversary Congress, Freiburg, Germany, 18-22 September 2017. p. 210.
Stenström E. and Arvidsson B. 2001 Fungicidal control of Lophodermium seditiosum on Pinus sylvestris seedlings in Swedish forest nurseries Scandinavian Journal of Forest Research 16 2 147 -154
Stephan, B.R. 1991. Inheritance of resistance to biotic factors. InM. Giertych and Cs. Mátyás (eds.). Genetics of Scots pine. pp. 205–217. Elsevier Science Publishers, Amsterdam, The Netherlands.
Stephan B.R. and Liesebach M. 1996 Results of the IUFRO 1982 Scots pine (Pinus sylvestris L.) provenance experiment in southwestern Germany Silvae Genetica 45 5 342 -349
Swedjemark, G., A.K. Borg-Karlson and B. Karlsson. 2012. Breeding for resistance in Norway spruce to the root and butt rot fungi Heterobasidion spp. In R.A. Sniezko, A.D. Yanchuk, J.T. Kliejunas, K.M. Palmieri, J.M. Alexander and S.J. Frankel (eds.). Proceedings of the 4th International Workshop on Genetics of Host-Parasite Interactions in Forestry. General Technical Report PSW-GTR-240. pp. 162–166. USDA Forest Service, Albany, CA.
Villari C, Battisti A., Chakraborty S., Michelozzi M., Bonello P., and Faccoli M. 2012 Nutritional and pathogenic fungi associated with the pine engraver beetle trigger comparable defenses in Scots pine Tree Physiology 32 7 867 -879

Information & Authors


Published In

cover image The Forestry Chronicle
The Forestry Chronicle
Volume 94Number 02April 2018
Pages: 155 - 161


Version of record online: 28 May 2018

Key Words

  1. Lophodermium spp
  2. resistance breeding
  3. provenances
  4. tree improvement


  1. Lophodermium spp
  2. croisements pour la résistance
  3. provenances
  4. amélioration génétique des arbres



Una Neimane
Latvian State Forest Research Institute “Silava”, Rigas 111, Salaspils, LV 2169, Latvia
Kaspars Polmanis
Latvian State Forest Research Institute “Silava”, Rigas 111, Salaspils, LV 2169, Latvia
Astra Zaļuma
Latvian State Forest Research Institute “Silava”, Rigas 111, Salaspils, LV 2169, Latvia
Dārta Kļaviņa
Latvian State Forest Research Institute “Silava”, Rigas 111, Salaspils, LV 2169, Latvia
Tālis Gaitnieks
Latvian State Forest Research Institute “Silava”, Rigas 111, Salaspils, LV 2169, Latvia
Āris Jansons [email protected]
Latvian State Forest Research Institute “Silava”, Rigas 111, Salaspils, LV 2169, Latvia

Metrics & Citations


Other Metrics


Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

View options


View PDF

Get Access





Share Options


Share the article link

Share on social media