Please note our website will be undergoing maintenance on Tuesday, May 28, 2024. e-Commerce transactions and new registrations will be temporarily unavailable during this time. We apologize for any inconvenience this may cause.
Free access

Quantifying the effect of non-spatial and spatial forest stand structure on rainfall partitioning in mountain forests, Southern China

Publication: The Forestry Chronicle
28 May 2018

Abstract

Forest stand structure plays an important role in rainfall interception and is a focal point in forest hydrology. Previous studies mainly looked at the effect of non-spatial attributes of stands while a few studies addressed the influence of spatial features. The aim of this study was to quantify the effect of stand structure on rainfall partitioning using diameter, height, leaf area index (LAI), neighbourhood comparison, mingling index and uniform angle index. The results revealed that the average accumulative throughfall, stemflow and interception loss accounted for 72.8%–83.2%, 0.5%–11.3% and 13.3%–26.2% of total precipitation, respectively, and significant differences existed in rainfall partitioning. The accumulative interception loss was negatively related to uniform angle index (a measure of tree spatial distribution patterns) as stand structure attribute was not available at each rainfall event. The effects of stand structure on throughfall, stemflow and interception loss varies considerably under different rainfall conditions. The LAI was significantly associated with interception loss for heavy rainfalls. The mingling index was negatively related to stemflow; however, significant relationships existed between mingling index, throughfall, and interception loss for light rainfall (drizzle). Significant positive relationships existed between uniform angle index and stemflow, while significant relationships existed for interception loss for light and heavy rainfalls. The results highlight that stand structure in combination with rainfall patterns influence rainfall partitioning.

Résumé

La structure des peuplements forestiers influence grandement l’interception des précipitations et est au coeur même de l’hydrologie forestière. Les études antérieures ont porté principalement sur l’effet des éléments non spatiaux des peuplements et il y a eu peu de travaux sur l’influence des éléments spatiaux. Cette étude avait pour but de quantifier l’effet de la structure du peuplement sur la répartition des eaux de pluie en fonction du diamètre, de la hauteur, de l’indice de surface foliaire (LAI), des comparaisons avec les voisins, de l’indice de mélange (mingling index) et de l’indice d’angle uniforme (uniform angle index). Les résultats ont montré que la moyenne cumulée de l’égouttement, du ruissellement le long des troncs et des pertes par interception représentaient respectivement 72,8 %–83,2 %, 0,5 %–11,3 % et 13,3 %–26,2 % de toute la précipitation et qu’il y avait des différences significatives dans la répartition de l’eau de pluie. La perte cumulée par interception montrait une corrélation négative avec l’indice d’angle uniforme (une mesure de la distribution spatiale des arbres) puisque nous ne disposions pas d’une mesure de la structure du peuplement pour chaque épisode de pluie. L’effet de la structure du peuplement sur l’égouttement, le ruissellement le long des troncs et les pertes par interception varie considérablement sous différentes conditions de précipitations. Le LAI était étroitement corrélé aux pertes par interception durant les fortes précipitations. Une hausse de l’indice de mélange se traduisait par une diminution du ruissellement le long des troncs; il y avait toutefois une relation significative entre l’indice de mélange, l’égouttement et la perte par interception lors des épisodes de pluie légère (bruine). On a noté des relations positives entre l’indice d’angle uniforme et le ruissellement sur les troncs et des relations significatives avec la perte par interception pour les précipitations légères et fortes. Les résultats montrent clairement que c’est la structure du peuplement combinée à l’intensité des précipitations qui influence la répartition de la précipitation.

Formats available

You can view the full content in the following formats:

References

Bosch J. and Hewlett J.D. 1982 A review of catchment experiments to determine the effects of vegetation changes on water yield and evapotranspiration J. Hydrol 55 3 -23
Carlyle-Moses, D.E. and J.H. Gash. 2011. Rainfall interception loss by forest canopies. In: Forest Hydrology and Biogeochemistry, pp. 407–423. Springer Netherlands.
Carlyle-Moses D.E., Laureano J.F., and Price A.G. 2004 Throughfall and throughfall spatial variability in Madrean oak forest communities of northeastern Mexico J. Hydrol 297 1 124 -135
Carlyle-Moses D.E., Lishman C.E., and McKee A.J. 2014 A preliminary evaluation of throughfall sampling techniques in a mature coniferous forest J. Forestry Res 25 2 407 -413
Crockford R.H. and Richardson D.P. 2000 Partitioning of rainfall into throughfall, stemflow and interception: Effect of forest type, ground cover and climate Hydrol. Process 14 16-17 2903 -2920
Cui Q.W., Bian L.G., and Shi J.D. 1980 Effects of canopy on precipitation interception Sci. Sinica 16 2 144 -146
Dietz J., Hölscher D., and Leuschner C. 2006 Rainfall partitioning in relation to forest structure in differently managed montane forest stands in Central Sulawesi, Indonesia Forest Ecol. Manag 237 1 170 -178
Dolman A.J. 1987 Summer and winter rainfall interception in an oak forest: Predictions with an analytical and a numerical simulation model J. Hydrol 90 1-2 1 -9
Dunkerley D. 2000 Measuring interception loss and canopy storage in dry land vegetation: A brief review and evaluation of available research strategies Hydrol. Process 14 4 669 -678
Gadow, K.V. and G.Y. Hui. 2002. Characterizing forest spatial structure and diversity. In: Proc. of the SUFOR international workshop: Sustainable forestry in temperate regions (pp: 20–30).
Gadow, K. and K. Füldner. 1992. Zur Methodik der Bestandesbeschreibung. Vortrag anlaesslich der Jahrestagung der AG Forsteinrichtung in Klieken b. Dessau.
Hölscher, D., J. Mackensen and J.M. Roberts. 2005. Forest recovery in the humid tropics: Changes in vegetation structure, nutrient pools and the hydrological cycle. Forests, Water and People in the Humid Tropics, Cambridge University Press, Cambridge. pp. 598–621.
Inoue A., Nagano M., and Sankoda K. 2017 Rainfall interception in an intensively managed low density stand of bamboo, Phyllostachys pubescens J. Forest Res 22 1 53 -60
Levia D.F. and Frost E.E. 2003 A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems J. Hydrol 274 1 1 -29
Levia D.F., Michalzik B., and Näthe K. 2015 Differential stemflow yield from European beech saplings: The role of individual canopy structure metrics Hydrol. Process 29 1 43 -51
Liang W.L., Kosugi K.I., and Mizuyama T. 2011 Soil water dynamics around a tree on a hillslope with or without rainwater supplied by stemflow Water Resour. Res 47 2 W02541
Li X., Niu J., Zhang L., Xiao Q., McPherson G.E., van Doorn N., and Meng C. 2016a A study on crown interception with four dominant tree species: A direct measurement Hydrol. Res 47 4 857 -868
Li X., Xiao Q., Niu J., Dymond S., van Doorn N.S., Yu X., and Li J. 2016b Process-based rainfall interception by small trees in Northern China: The effect of rainfall traits and crown structure characteristics Agr. Forest Meteorol 218 65 -73
Li Y., Cai T., Man X., Sheng H., and Ju C. 2015 Canopy interception loss in a Pinus sylvestris var. mongolica forest of Northeast China J. Arid Land 7 6 831 -840
Llorens P. and Domingo F. 2007 Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe J. Hydrol 335 1 37 -54
Loustau D., Berbigier P., Granier A., and Moussa F.E.H. 1992 Interception loss, throughfall and stemflow in a maritime pine stand. I. Variability of throughfall and stemflow beneath the pine canopy J. Hydrol 138 3-4 449 -467
Molina A.J. and Del Campo A.D. 2012 The effects of experimental thinning on throughfall and stemflow: A contribution towards hydrology-oriented silviculture in Aleppo pine plantations Forest Ecol. Manag 269 206 -213
Park A. and Cameron J.L. 2008 The influence of canopy traits on throughfall and stemflow in five tropical trees growing in a Panamanian plantation Forest Ecol. Manag 255 5 1915 -1925
Peng H., Zhao C., Feng Z., Z Xu, Wang C., and Zhao Y. 2014 Canopy interception by a spruce forest in the upper reaches of Heihe River basin, Northwestern China Hydrol. Process 28 4 1734 -1741
Pérez-Suárez M., Arredondo-Moreno J.T., Huber-Sannwald E., and Serna-Pérez A. 2014 Forest structure, species traits and rain characteristics influences on horizontal and vertical rainfall partitioning in a semiarid pine–oak forest from Central Mexico Ecohydrol 7 2 532 -543
Ponette-González A.G., Weathers K.C., and Curran L.M. 2010 Water inputs across a tropical montane landscape in Veracruz, Mexico: Synergistic effects of land cover, rain and fog seasonality, and interannual precipitation variability Glob. Change Biol 16 3 946 -963
Rodrigo A. and Àvila A. 2001 Influence of sampling size in the estimation of mean throughfall in two Mediterranean holm oak forests J. Hydrol 243 3–4 216 -227
Roth B. E., Slatton K.C., and Cohen M.J. 2007 On the potential for high-resolution Lidar to improve rainfall interception estimates in forest ecosystems Front. Ecol. Environ 5 8 421 -428
Rowe L.K. 1983 Rainfall interception by an evergreen beech forest, Nelson, New Zealand J. Hydrol 66 1-4 143 -158
Shinohara Y., Komatsu H., Kuramoto K., and Otsuki K. 2013 Characteristics of canopy interception loss in moso bamboo forests of Japan Hydrol. Process 27 14 2041 -2047
Staelens J., De Schrijver A., Verheyen K., and Verhoest N.E. 2006 Spatial variability and temporal stability of throughfall deposition under beech (Fagus sylvatica L.) in relationship to canopy structure Environ. Pollut 142 2 254 -263
Staelens J., De Schrijver A., Verheyen K., and Verhoest N.E. 2008 Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: Influence of foliation, rain event characteristics, and meteorology Hydrol. Process 22 1 33 -45
Tanaka N., Levia D., Igarashi Y., Yoshifuji N., Tanaka K., Tantasirin C., and Kumagai T.O. 2017 What factors are most influential in governing stemflow production from plantation-grown teak trees? J. Hydrol 544 10 -20
Teale N.G., Mahan H., Bleakney S., Berger A., Shibley N., Frauenfeld O.W., and Washington-Allen R. 2014 Impacts of vegetation and precipitation on throughfall heterogeneity in a tropical premontane transitional cloud forest Biotropica 46 6 667 -676
Tian F., Zhao C., Feng Z., Peng S., and Peng H. 2012 Eco-hydrological effects of Qinghai spruce (Picea crassifolia canopy and its influence factors in the Qilian Mountains Acta Ecologica Sinica 32 4 1066 -1076
Xiao Q., McPherson E.G., Ustin S.L., Grismer M.E., and Simpson J.R. 2000 Winter rainfall interception by two mature opengrown trees in Davis, California Hydrol. Process 14 4 763 -784
Zhao Y., Wang K., Chen Q., Wang Y., Wang Y., and Duan X. 2012 Spatial structure characteristics of Pinus massoniana and broadleaved tree mixed forest in Jinyunshan National Nature Reserve in Chongqing City For. Resour. Manag 1 48 -53
Zimmermann A., Wilcke W., and Elsenbeer H. 2007 Spatial and temporal patterns of throughfall quantity and quality in a tropical montane forest in Ecuador J. Hydrol 343 1 80 -96
Zimmermann B., Zimmermann A., Scheckenbach H.L., Schmid T., Hall J.S., and van Breugel M. 2013 Changes in rainfall interception along a secondary forest succession gradient in lowland Panama Hydrol. Earth Syst. Sci 17 11 4659 -4670

Information & Authors

Information

Published In

cover image The Forestry Chronicle
The Forestry Chronicle
Volume 94Number 02April 2018
Pages: 162 - 172

History

Version of record online: 28 May 2018

Key Words

  1. rainfall partitioning
  2. LAI
  3. mingling index
  4. uniform angle index
  5. rainfall patterns

Mots-clés

  1. répartition de l’eau de pluie
  2. LAI
  3. indice de mélange
  4. indice d’angle uniforme
  5. intensité des precipitations

Authors

Affiliations

Chunxia Liu
Jinyun Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China
Jinyun Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China
Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China
Chao Ma
Jinyun Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China
Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China
Yunqi Wang
Jinyun Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China
Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China
Huilan Zhang
Jinyun Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China
Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China
Bo Hu
Jinyun Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, PR China

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

View options

PDF

View PDF

Get Access

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media